Organic Chemistry, Fourth Edition

Janice Gorzynski Smith University of Hawai'i

Chapter 22 Lecture Outline

Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Carboxylic Acid Derivatives

1

Carboxylic Acid Derivatives

3

Anhydrides and Amides

Lactones, Lactams and Nitriles

Structural Features of the Carbonyl Group

The two most important features of the carbonyl group are:

Resonance of Carboxylic Acid Derivatives

- Three resonance structures stabilize carboxylic acid derivatives (RCOZ) by delocalizing electron density.
- The more resonance structures 2 and 3 contribute to the resonance hybrid, the more stable RCOZ is:

Stability of Carboxylic Acid Derivatives

• Because the basicity of Z determines the relative stability of the carboxylic acid derivatives, the following stability order results:

• In summary, as the basicity of Z increases, the stability of RCOZ increases because of added resonance stabilization.

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

9

Resonance of Carboxylic Acid Derivatives

• The structure and bonding of nitriles is very different from that of other carboxylic acid derivatives, and resembles the C-C triple bond of alkynes.

- The carbon atom on the C≡N group is *sp* hybridized, making it linear with a bond angle of 180°.
- The triple bond consists of one σ and two π bonds.

Nomenclature—Acid Chlorides

- For acyclic acid chlorides: change the suffix *-ic acid* of the parent carboxylic acid to the suffix *-yl chloride*; or
- When the -COCI group is bonded to a ring: change the suffix -carboxylic acid to -carbonyl chloride.

11

Nomenclature—Anhydrides

- Symmetrical anhydrides are named by changing the acid ending of the carboxylic acid to the word *anhydride*.
- Mixed anhydrides, which are derived from two different carboxylic acids, are named by alphabetizing the names for both acids and replacing the word *acid* with the word *anhydride*.

Composition of Anhydrides

- · Anhydride means without water.
- Removing one molecule of water from two molecules of carboxylic acid forms an anhydride.

13

Nomenclature—Esters

Nomenclature—Amides

• All 1° amides are named by replacing the *-ic acid*, *-oic acid*, or *-ylic acid* ending with the suffix amide.

15

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Nomenclature—Nitriles

- In contrast to the carboxylic acid derivatives, nitriles are named as alkane derivatives.
- Find the longest chain that contains the CN and add the word nitrile to the name of parent alkane.
- Number the chain to put CN at C1, but omit this number from the name.
- Common names of nitriles are derived from the names of the carboxylic acid having the same number of carbon atoms by replacing the *-ic acid* ending of the carboxylic acid with the suffix *-onitrile*.
- When the CN is named as a substituent it is called a cyano group.

17

Nomenclature—Nitriles

• CH₃CH₂CH₂CN is butanenitrile, not propanenitrile.

18

19

Intermolecular Attractions

- Nitriles also have dipole-dipole interactions, because they have a polar C≡N group.
- Because they contain one or two N–H bonds, 1° and 2° amides are capable of intermolecular hydrogen bonding and will have substantially higher melting and boiling points.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Property	Observation			
Boiling point and melting point	 Primary (1°) and 2° amides have <i>higher</i> boiling points and melting points than compounds of comparable molecular weight. The boiling points and melting points of other carboxylic acid derivatives are similar to those of other polar compounds of comparable size and shape. 			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	similar boiling points higher boiling point 1° amide			
Solubility	 Carboxylic acid derivatives are soluble in organic solvents regardless of size. Most carboxylic acid derivatives having ≤ 5 C's are H₂O soluble because they can hydrogen bond with H₂O (Section 3.4C). Carboxylic acid derivatives having > 5 C's are H₂O insoluble because the nonpolar alkyl portion is too large to dissolve in the polar H₂O solvent. 			

Key: MW = molecular weight

Spectroscopic Properties—IR

- Like all carbonyl compounds, carboxylic acid derivatives have a strong C=O absorption between 1600 and 1850 cm⁻¹.
- Primary (1°) and 2° amides have two additional absorptions due to N–H bonds:
 - 1. One or two N–H stretching peaks at 3200–3400 cm⁻¹.
 - 2. An N–H bending absorption at ~1640 cm⁻¹.
- As the carbonyl π bond becomes more delocalized, the C=O absorption shifts to lower frequency.
- Conjugation shifts a carbonyl absorption to lower frequencies.
- For cyclic carboxylic acid derivatives, decreasing ring size shifts a carbonyl absorption to higher frequencies.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

23

Spectroscopic Properties—NMR

- Protons on the α carbon to the carbonyl absorb at 2–2.5 ppm.
- The N–H protons of 1° and 2° amides absorb at 7.5–8.5 ppm.
- In their ¹³C NMR spectra, carboxylic acid derivatives give a highly deshielded peak at 160–180 ppm due to the carbonyl carbon.
 - This is somewhat upfield from the carbonyl absorption of aldehydes and ketones, which occurs at 190–215 ppm.
- Nitriles give a peak at 115–120 ppm in their ¹³C NMR spectrum due to the *sp* hybridized carbon.
 - This is further downfield than the signal due to the *sp* hybridized carbon of an alkyne which occurs at 65–100 ppm.

Interesting Esters and Amides

• Many low molecular weight esters have pleasant and very characteristic odors.

25

Biologically Active Esters

- Vitamin C (ascorbic acid) is a water-soluble vitamin that contains a five-membered lactone ring.
 - Vitamin C is synthesized in plants.
 - Humans do not have the necessary enzymes to make it, so we must obtain it from our diet.
- Cocaine is an addictive stimulant obtained from the leaves of the coca plant.

Proteins—Polyamides

Proteins are an important group of naturally occurring amides, consisting of polymers of amino acids joined together by amide linkages.

Useful Drugs Containing Lactams

Nucleophilic Acyl Substitution

- Nucleophilic acyl substitutions is the characteristic reaction of carboxylic acid derivatives.
- This reaction occurs with both negatively charged nucleophiles and neutral nucleophiles.

- Carboxylic acid derivatives (RCOZ) react with nucleophiles because they contain an electrophilic, unhindered carbonyl carbon.
- Substitution occurs, *not* addition, because carboxylic acid derivatives (RCOZ) have a leaving group Z on the carbonyl carbon.

```
29
```

Mechanism of Nucleophilic Acyl Substitution

• Other nucleophiles that participate in this reaction include:

Drawing Products of Nucleophilic Acyl Substitution

- [1] Find the sp^2 hybridized carbon with the leaving group.
- [2] Identify the nucleophile.
- [3] Substitute the nucleophile for the leaving group. With a neutral nucleophile, the proton must be lost to obtain a neutral substitution product.

Reactivity Related to Leaving Group Ability

- Based on this order of reactivity, more reactive compounds can be converted into less reactive ones.
- The reverse is not usually true.

Comparing Leaving Group and Nucleophile

- Nucleophilic addition to a carbonyl forms a tetrahedral intermediate with two possible leaving groups, Z or Nu.
- Whichever group is a better leaving group will be eliminated.

33

General Reactions of Acid Chlorides

- Since acid chlorides have the best leaving group of acid derivatives, they react readily with a wide range of nucleophiles to form nucleophilic substitution products.
- HCl is usually formed as a by-product.
- A weak base like pyridine is added to the reaction mixture to remove the strong acid (HCI), forming an ammonium salt.

Reactions of Acid Chlorides and Oxygen Nucleophiles

 Acid chlorides react with oxygen nucleophiles to form anhydrides, carboxylic acids, and esters.

Reactions of Acid Chlorides and Amines

- Acid chlorides also react with ammonia, and 1° and 2° amines to form 1°, 2° and 3° amides, respectively.
- Two equivalents of NH₃ or amine are used.
- One equivalent acts as the nucleophile to replace CI, while the other reacts as a base with the HCI by-product to form an ammonium salt.

36

Amide Formation

- As an example, reaction of an acid chloride with diethylamine forms the 3° amide *N*,*N*-diethyl-*m*-toluamide, popularly known as DEET.
- DEET is the active ingredient in the most widely used insect repellents, and is effective against mosquitoes, fleas, and ticks.

Mechanisms of Acid Chloride Substitutions

General Reaction of Anhydrides

- Anhydrides are somewhat less reactive than acid chlorides, but still readily react with most nucleophiles.
- Nucleophilic attack occurs at one carbonyl group, while the second carbonyl becomes part of the leaving group.

39

Reactions of Anhydrides

Replacing NH_3 with a 1° or 2° amine forms a 2° or 3° amide, respectively.

Mechanism of Anhydride Substitution

• Besides the usual steps for nucleophilic addition and elimination of the leaving group, the mechanism involves an additional proton transfer.

Anhydrides Use in Acetylation Reactions

41

 Reactions that result in the transfer of an acetyl group are known as acetylations.

General Reactions of Carboxylic Acids

 Nucleophiles that are also strong bases react with carboxylic acids by removing a proton first, before any nucleophilic substitution reaction can take place.

43

Acyl Substitution Reactions of Carboxylic Acids

Formation of Acyl Halides

- Treatment of a carboxylic acid with thionyl chloride (SOCI₂) affords an acid chloride.
- This is possible because thionyl chloride converts the OH group of the acid into a better leaving group, and because it provides the nucleophile (CI⁻) to displace the leaving group.

Dehydration of Carboxylic Acids

- Although carboxylic acids cannot readily be converted into anhydrides, dicarboxylic acids can be converted to cyclic anhydrides by heating to high temperatures.
- This is a dehydration reaction because a water molecule is lost from the diacid.

47

Fischer Esterification of Carboxylic Acids

- Treatment of a carboxylic acid with an alcohol in the presence of an acid catalyst forms an ester.
- This reaction is called a Fischer esterification.
- The reaction is an equilibrium, so it is driven to the right by using excess alcohol or by removing water as it is formed.

49

No Base Catalysis of Fischer Esterification

- Esterification of a carboxylic acid occurs in the presence of acid but not in the presence of base.
- Base removes a proton from the carboxylic acid, forming the carboxylate anion, which does not react with an electron-rich nucleophile.

Intramolecular Fischer Esterification

• Intramolecular esterification of γ - and δ -hydroxy carboxylic acids forms five- and six-membered lactones.

51

Amide Formation from Carboxylic Acids

- Carboxylic acids cannot be converted into amides by reaction with NH₃ or an amine because amines are bases, and undergo an acid–base reaction to form an ammonium salt before nucleophilic substitution occurs.
- However, heating the ammonium salt at high temperature (>100°C) dehydrates the resulting ammonium salt of the carboxylate anion to form an amide, although the yield can be low.

Amide Formation from Carboxylic Acids

- The overall conversion of RCOOH to RCONH₂ requires two steps:
 - [1] Acid–base reaction of RCOOH with NH_3 to form an ammonium salt.
 - [2] Dehydration at high temperature (>100°C).

53

DCC in Amide Formation

 A carboxylic acid and an amine readily react to form an amide in the presence of dicyclohexylcarbodimide (DCC), which is converted to the by-product dicyclohexylurea by the course of the reaction.

DCC in Amide Formation

- DCC is a dehydrating agent.
- The dicyclohexylurea by-product is formed by adding the elements of H₂O to DCC.
- DCC promotes amide formation by converting the carboxy group OH group into a better leaving group.

Reactions of Esters

 Esters are hydrolyzed with water in the presence of either acid or base to form carboxylic acids or carboxylate anions, respectively.

• Esters react with NH₃ and amines to form 1°, 2°, or 3° amides.

Base Hydrolysis of Esters

• Basic hydrolysis of an ester is also called saponification.

- Next, the carboxylic acid is a strong organic acid and the leaving group ('OR') is a strong base, so an acid-base reaction occurs in Step [3] to form the carboxylate anion.
- Hydrolysis is base promoted, <u>not</u> base catalyzed, because the base (OH⁻) is the nucleophile that adds to the ester and forms part of the product.
- It participates in the reaction and is not regenerated later.

Basic Hydrolysis of Esters

- The carboxylate anion is resonance stabilized, and this drives the equilibrium in its favor.
- Once the reaction is complete and the anion is formed, it can be protonated with strong acid to form the neutral carboxylic acid.

Lipid Hydrolysis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Each triacylglycerol is a triester, containing three long hydrocarbon side chains.
- Unsaturated triacylglycerols have one or more double bonds in their long hydrocarbon chains, whereas saturated triacylglycerols have none.

61

Structure of a Saturated Triacylglycerol

Figure 22.4

 This triacylglycerol has no double bonds in the three R groups (each with 11 C's) bonded to the ester carbonyls, making it a saturated fat.

Lipid Hydrolysis

- The first step in the metabolism of a triacylglycerol is hydrolysis of the ester bonds to form glycerol and three fatty acids.
- The three bonds of the triacylglycerol drawn in red are cleaved in hydrolysis.
- In cells, this reaction is catalyzed by lipases.
- The fatty acids produced on hydrolysis are then oxidized, ultimately yielding CO_2 and H_2O , as well as nearly twice as much energy as an equal amount of carbohydrate.

Fat Substitutes

 One recent attempt to reduce calories in common snack foods has been to substitute "fake fats" such as olestra for triacylglycerols.

Soap Formation

- Soap is prepared by the basic hydrolysis or saponification of a triacylglycerol.
- Heating an animal fat or vegetable oil with aqueous base hydrolyzes the three esters to form glycerol and sodium salts of three fatty acids.

65

Reactions of Amides

- Amides are the least reactive of the carboxylic acid derivatives.
- Amides are hydrolyzed in acid or base to form carboxylic acids or carboxylate anions.

• In acid, the amine by-product is protonated as an ammonium ion, whereas in base, a neutral amine forms.

Amide Hydrolysis

- The mechanism of amide hydrolysis in acid is exactly the same as the mechanism of ester hydrolysis in acid.
- The mechanism of amide hydrolysis in base has the usual two steps in the general mechanism for nucleophilic acyl substitution, plus an additional proton transfer.

β-Lactam Antibiotics

- Penicillin and related β-lactams kill bacteria by a nucleophilic acyl substitution reaction.
- All penicillins have an unreacted side chain and a very reactive amide that is part of a β -lactam.
- The β -lactam is more reactive than other amides because it is part of a strained, four membered ring that is readily opened with nucleophiles.

The Mechanism of Action of β-Lactam Antibiotics

- Bacterial cell walls are composed of carbohydrates linked together by peptide chains containing amide linkages formed by the enzyme glycopeptide transpeptidase.
- A nucleophilic OH group of the glycopeptide transpeptidase enzyme cleaves the β -lactam ring of penicillin by a nucleophilic acyl substitution reaction.
- The reaction causes covalent modification of the enzyme, thus inactivating it and halting cell wall construction killing the bacterium.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

 Table 22.5
 Summary of the Nucleophilic Substitution Reactions of Carboxylic Acids and Their Derivatives

		Product				
Starting material		RCOCI	(RCO)20	RCOOH	RCOOR'	RCONR ¹ 2
[1] RCOCI	\rightarrow	-	1	1	1	1
[2] (RCO) ₂ O	\rightarrow	×	-	1	1	1
[3] RCOOH	\rightarrow	1	1	-	1	1
[4] RCOOR'	\rightarrow	×	×	1	-	1
[5] RCONR'2	\rightarrow	×	×	1	×	-
Table key: ✓ = X =	A re	eaction occurs	s.			

Natural Fibers

- Natural fibers are obtained from either plant or animal sources
- Fibers like wool and silk are proteins obtained from animals.
- Cotton and linen are derived from carbohydrates having the general structure of cellulose.

Synthetic Fibers: Nylon—A Polyamide

- There are a number of synthetic polyamides (nylons), but the most well known is nylon 6,6.
- Nylon 6,6 can be synthesized from two six-carbon monomers which react together to form new amide bonds.
- Nylon is a condensation polymer because a small molecule (in this case, HCI) is eliminated during its synthesis.

Synthetic Fibers: Polyesters

• The most common polyester is polyethylene terephthalate (PET), which is sold under a variety of trade names (Dacron, Terylene, and Mylar), depending on its use.

73

Synthesis of Polyesters

• One method of synthesizing a polyester is by acid-catalyzed esterification of a diacid with a diol (Fischer esterification).

Biological Acylations

- In cells, acylations occur with the sulfur analogue of an ester (a thioester).
- The most common ester is acetyl coenzyme A (acetyl CoA).

75

Acyl Transfer Reactions

 An example of a biological acyl transfer reaction is the formation of the neurotransmitter acetylcholine from choline and acetyl CoA.
 Coverige to The McCreare HI Comparison regard for reproductor or depty.

- Other important acyl transfer reactions include the reaction of thioesters of fatty acids with cholesterol, forming cholesteryl esters.
- These esters are the principal form in which cholesterol is stored and transported in the body.
- It is carried in the blood stream in particles that also contain proteins and phospholipids.
- These particles are classified by their density: low density lipoproteins (LDL) and high density lipoproteins (HDL). 76

Cholesteryl Esters and LDL Particles

Structure and Formation of Nitriles

77

- Nitriles have the general structural formula RC≡N.
- Two useful biologically active nitriles are letrozole and anastrozole.

- Nitriles are prepared by $S_N 2$ reactions of unhindered methyl and 1° alkyl halides with CN.

Reactions of Nitriles

Nitriles will react with water, hydride and organometallics.

Hydrolysis of Nitriles

- Nitriles are hydrolyzed with water in the presence of acid or base to yield carboxylic acids or carboxylate anions.
- In this reaction, the three C–N bonds are replaced by three C–O bonds.

Amide Tautomers

- The mechanism of this reaction involves formation of an amide tautomer.
- Two tautomers can be drawn for any carbonyl compound, and those for a 1° amide are as follows:

• The imidic acid tautomer is the less stable form, having a C=N and an O-H bond.

81

Keto-Enol Tautomers

• The imidic acid and amide tautomers are interconverted by treatment with acid or base, analogous to keto-enol tautomers of other carbonyl compounds.

Reduction of Nitriles

• Treatment of a nitrile with LiAlH₄ followed by H₂O adds two equivalents of H₂ across the triple bond, forming a 1° amine.

• Treatment of a nitrile with a milder reducing agent such as DIBAL-H followed by water forms an aldehyde.

Nitrile Reduction Mechanisms

 With LiAlH₄, two equivalents of hydride are sequentially added to yield a dianion which is then protonated with H₂O to form an amine.

0	5
0	0

Nitrile Reduction Mechanisms

- With DIBAL-H, nucleophilic addition of one equivalent of hydride forms an anion which is protonated with water to generate an imine.
- The imine is then hydrolyzed in water to form an aldehyde.

Reduction of Nitriles with Organometallics

• Both Grignard and organolithium reagents react with nitriles to form ketones with a new C–C bond.

87

Organometallic Reduction Mechanism

- The reaction occurs by nucleophilic addition of the organometallic reagent to the polarized C–N triple bond to form an anion, which is protonated with water to form an imine.
- Water then hydrolyzes the imine, replacing the C=N with C=O.
- The final product is a ketone with a new C–C bond.